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Supplementary Methods 

Quality control of genotype data from Genes & Health 

Quality control of genotype data was performed using Illumina’s GenomeStudio and plink v1.9. 

We first removed variants with cluster separation scores <0.57, Gentrain score <0.7, excess 

of heterozygotes >0.03, or ChiTest 100 (Hardy-Weinberg test) <0.6 in GenomeStudio, as well 

as variants that were included on the array in order to tag specific structural variants. We 

removed samples with low call rate (<0.995 for male samples and <0.992 for female samples 

across all 637,829 variants including those on Y chromosome for males) and those that failed 

gender checks. When there were duplicate samples, we retained the sample with the highest 

call rate. Using plink, we further removed variants with low call rate (<0.99), and the variant 

with the lowest call rate amongst duplicate variant pairs. We excluded rare variants with minor 

allele frequency (MAF) <1%. The high levels of autozygosity in this cohort can cause variants 

to fail Hardy-Weinberg equilibrium test. We thus removed variants that failed the Hardy-

Weinberg test (p<1✕10-6) in a subset of samples with low level of autozygosity. To define 

these ‘low-autozygosity’ individuals, we pruned SNPs (LD r2 >0.8) and called runs of 
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homozygosity (RoHs) using plink1.9 with default parameters, then took the 64% of the 

individuals who had a fraction of the genome in RoHs <0.5%.  

 

Having identified related individuals (second degree or closer; kinship coefficient >0.0884) 

using KING v2.2.41, we performed principal component analysis (PCA) in unrelated samples, 

and projected the remainder onto the same PC space using smartpca from EIGENSOFT 

v7.2.12.  

 

Identification of European-ancestry individuals from eMERGE 

To identify EUR individuals from eMERGE, we performed PCA in samples from the 1000 

Genomes project phase 3 dataset, and projected eMERGE participants onto the same PC 

space using smartpca from EIGENSOFT v7.2.1 2. For PCA, we restricted to LD-pruned 

common SNPs (MAF ≥1%) with imputation INFO score ≥0.98 in eMERGE. We identified 

samples that were clustered together with the EUR samples from the 1000 Genomes project 

using a dimension reduction method, Uniform Manifold Approximation and Projection (UMAP), 

applied to the first 20 PCs, performed using the R package “umap” v0.2.6.0 3. Self-reported 

Hispanic or Latino, African, Asian, American Indian or Alaska Native individuals were 

excluded. This resulted in 43,877 EUR individuals available for the comparison with G&H. 

  

Phenotype and covariate definitions from electronic health-

record data in Genes & Health 

Of the 22,490 genotyped G&H individuals with electronic health record data, 20,830 had 

primary care data available through the Discovery Data Service 4 which includes clinical 

observations as well as current and historic diagnoses (coded using READ version 2 codes, 

https://paperpile.com/c/HFLxz0/BhkHO
https://paperpile.com/c/HFLxz0/JpE88
https://paperpile.com/c/HFLxz0/JpE88
https://paperpile.com/c/HFLxz0/ztMz9
https://paperpile.com/c/HFLxz0/xY6nT
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and recently converted to SNOMED CT codes using standard mapping protocols 5). 17,226 

had diagnosis and procedure codes (ICD10 and OPCS4 codes, respectively) extracted from 

the UK’s largest secondary care health provider, Barts Health NHS Trust. G&H has a rich 

source of data on clinical diagnoses which goes back more than 20 years ago when the 

primary care health records were digitised around 2000, and pre-digitisation dates of 

diagnoses are also included 6. We reported the proportions of the participants who had high 

total cholesterol and LDL cholesterol levels in the Genes & Health cohort, and the cutoffs 

were recommended by the UK National Health Service (https://www.nhs.uk/conditions/high-

cholesterol/cholesterol-levels/). 

 

Coronary artery disease (CAD): We defined CAD cases as those with myocardial infarction 

or coronary revascularization in either primary and secondary care data. We excluded 

individuals with angina, chronic ischemic heart disease, aneurysm or atherosclerotic 

cardiovascular disease from the control sample 7. ICD10 and OPCS codes that were used to 

define CAD are in Supplementary Data 1. Since procedure codes were not available in 

eMERGE, we performed a sensitivity analysis in G&H to investigate the effects of excluding 

OPCS4 codes in CAD ascertainment. For this, we defined CAD solely using ICD10 codes in 

individuals with secondary care data, ignoring OPCS codes and primary care data; we 

excluded individuals without secondary care data for this analysis.  

 

Body mass index (BMI): We used median adult height and weight measurements within the 

past 5 years to calculate BMI. 

 

Adjustment of lipids for statin usage: For lipids, we took the latest adult measurements 

and corrected for statin usage if lipid levels were measured between the start and end date 

of any statin prescriptions. No adjustment was made on HDL cholesterol (HDL-C) or 

triglycerides. Adjustment of lipids followed the procedure in Liu et al. 8, as follows. To correct 

for statin usage, total cholesterol (TC) was replaced by TC/0.8. LDL cholesterol (LDL-C) 

https://paperpile.com/c/HFLxz0/IsMun
https://paperpile.com/c/HFLxz0/FlkB7
https://www.nhs.uk/conditions/high-cholesterol/cholesterol-levels/
https://www.nhs.uk/conditions/high-cholesterol/cholesterol-levels/
https://paperpile.com/c/HFLxz0/O0Rzf
https://paperpile.com/c/HFLxz0/aZtzM
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levels were calculated using the Friedewald equation, and statin-adjusted LDL-C was 

recalculated using adjusted TC levels as follows: corrected LDL-C = uncorrected LDL-C + 

0.2 ✕ adjusted TC. LDL-C/0.7 was used for 32 individuals for whom we couldn’t find a TC 

measurement on the same date.  

 

Adjustment of blood pressure for medication usage: We extracted the latest systolic 

blood pressure (SBP) and diastolic blood pressure (DBP) measurements and adjusted for 

blood pressure medication use by adding 15 and 10 mmHg to SBP and DBP, respectively, if 

the measurement coincided with any prescription date 9.  

 

For assessing PGS accuracy, we excluded one sample in each pair of 2nd-degree relatives 

(kinship coefficient >0.0884 calculated using KING v2.2.4 1). Individuals with the highest 

number of relatives (and controls, if the trait is binary) were removed first. Sample sizes for 

each trait are in Supplementary Data 2. Quantitative traits were inverse normal transformed.  

 

Phenotype definitions from electronic health-record data in 

eMERGE 

We excluded participants younger than 16 years old. Lipid and blood pressure measurements 

were taken from dbGaP dataset phs000888.v1.p1, Data on medications affecting lipid and BP 

measurements were not available, so the highest measurements for LDL, TC, SBP, and DBP 

were used when comparing PGSs with G&H in order to minimise the effects of medications. 

For BMI, we took the median value from adult measurements (phs001584.v1.p1). CAD was 

ascertained using ICD9/10 codes which were available in the updated eMERGE Phase III 

dataset (phs001584.v2.p2). CAD cases and controls were defined based on secondary care 

ICD10 codes as described above for G&H (Supplementary Data 1).  

https://paperpile.com/c/HFLxz0/SPKZy
https://paperpile.com/c/HFLxz0/BhkHO
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Estimation of statistical power for replication 

The pseudo R code for calculating the power at each locus is shown below 10,11. 

Binary traits: 
  alpha = replication significance level 

  f = Allele frequency in controls in the replication cohort 

  n = sample size of the replication cohort 

  phi = n_case / n 

  b = effect size in the discovery GWAS 

  POWER = pchisq(qchisq(alpha, df = 1, lower = F), df = 1, ncp = 2*f*(1-

f)*n*phi*(1-phi)*b^2, lower = F) 

 

Quantitative traits: 
    f = Allele frequency in the replication cohort 
  q2 = 2*f*(1-f)*b^2 

    POWER = pchisq(qchisq(alpha, df = 1, lower = F), df = 1, ncp = n*q2/(1-
q2), lower = F) 

 

Calculation of QRISK3 scores in Genes & Health 

We used clinical data that were extracted earlier than the assessment date (1 January 2010) 

to calculate QRISK3. We excluded about one third of CAD cases whose diagnosis was made 

earlier than the assessment date (prevalent cases) and used incident cases who developed 

CAD later. Follow-up varied for cases and was fixed at 10 years for controls. The QRISK3 

algorithm has variables that indicate whether a patient has a variety of other diseases, and 

these were defined using the codes shown in Supplementary Data 3, following 12. Medication 

use (hypertension treatment, corticosteroid, and atypical antipsychotic medication) was 

defined as two or more prescriptions, with the most recent one having been issued within 28 

days prior to the assessment. We used the most recent measurements taken prior to the 

assessment date, and kept individuals with at least three non-missing measurements out of 

four (height, weight, SBP, and TC). Pattern of missingness is shown in Figure S3. We kept 

individuals with at least three non-missing quantitative measurements out of height, weight, 

https://paperpile.com/c/HFLxz0/qkaGA+kIrkr
https://paperpile.com/c/HFLxz0/G1Z1O
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SBP, HDL, and TC. Townsend index was not available in G&H, so we used the mean value 

(3.307) of the lowest two quintiles from the 2011 census data in the UK 13. HDL-C levels were 

all measured later than 2010 in G&H, so for the TC/HDL-C ratio, we used 3.905 and 4.882 

(averages calculated using later data) for females and males, respectively. To deal with 

missing data, we applied multiple imputation which accounts for sex, age, and genetically-

defined ancestry (Bangladeshi versus Pakistani; identified using PCA-UMAP), using the R 

package “mice” v3.13.0 to impute height, weight, SBP, SD of SBP measurements within 2 

years, and smoking status. 

 

Integration of QRISK3 scores with PGS for CAD 

To integrate QRISK3 scores with PGS for CAD, we followed Riveros-Mckay et al.12 and 

calculated an integrated score by multiplying the odds converted from the QRISK3 score with 

the odds ratio given an individual’s PGS, where the odds ratio per SD of PGS was estimated 

using a logistic regression in which QRISK3 and their interaction were accounted for. The 

logistic regression was performed in males and females separately. We used the most 

accurate PGS for CAD in SAS from the PGS Catalog, which was developed by Wang et al. 14; 

this score was derived from EUR GWAS using LDpred and tuned in SAS individuals in UKBB. 

We regressed out 10 PCs from the PGS, and used the scaled residuals in the Cox regression 

analysis.  

 

Sensitivity analysis to assess the potential effects of missing 

data on QRISK3 and the integrated score 

There was a high proportion of missing data for continuous variables used in the QRISK3 

algorithm (Figure S3A), especially for HDL-C which was not measured earlier than 2010 and 

https://paperpile.com/c/HFLxz0/dQU7A
https://paperpile.com/c/HFLxz0/G1Z1O
https://paperpile.com/c/HFLxz0/nQFio
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total cholesterols. To assess the potential effects of high missingness on the evaluation of 

QRISK3 and the integrated score which combined the PGS, we applied the following 

sensitivity analysis. For data that were available at a later point (later than the start date of the 

follow-up analysis; yellow in Figure S3B), we included them in the calculation of QRISK3 

scores. We applied multiple imputation as described above and replaced the remaining 

missing data (red in Figure S3B) with imputed data. We then assessed the predictive accuracy 

of the new QRISK3 score and the integrated score. Results of the sensitivity analysis were in 

Supplementary Data 13. 

 

Heritability estimation 

We used unrelated individuals to estimate SNP heritability using GCTA-GREML. We excluded 

one sample in each pair of 3rd-degree relatives (kinship coefficient >0.0442 calculated using 

KING v2.2.41). Age, sex, and first 10 genetic PCs were added as covariates. We first used 

SNPs with INFO >0.9 and MAF >0.01 to construct the GRM and calculate SNP heritability in 

each cohort separately. There are 5,122,196 and 2,965,005 SNPs available in eMERGE and 

G&H, separately. We also calculated SNP heritability using the intersection of these SNP sets 

in both cohorts (N=2,228,506), and we observed a similar trend with slightly smaller 

differences between the two cohorts (Supplementary Data 7). 

 

Trans-ancestry genetic correlations 

We calculated the trans-ancestry genetic correlations between G&H and UKBB European-

ancestry individuals using Popcorn. The genetic correlation indicates the correlation of causal-

variant effect sizes across the genome at SNPs common to both populations. Variant LD 

scores were estimated for ancestry-matched 1000 Genomes v3 data for each study 

combination (i.e. South Asian-European ancestry). The estimation of LD scores failed for 

https://paperpile.com/c/HFLxz0/BhkHO
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chromosome 6 for some groups, so we left out the major histocompatibility complex (MHC) 

region (positions 28,477,797 to 33,448,354) from chromosome 6 from all comparisons. 

Variants with INFO score <0.9 or MAF <0.01 were excluded.  

 

Trans-ancestry colocalisation  

We used the TAColoc 15 to perform the trans-ancestry colocalisation analysis. This method 

adopts the joint likelihood mapping (JLIM) statistic developed by Chun and colleagues 16 that 

estimates the posterior probabilities for colocalisation between GWAS signals and compares 

them to probabilities of distinct causal variants while explicitly accounting for LD structure. For 

this, LD scores were estimated using a subset of samples from the 1000 Genomes Project v3 

that had matching ancestry to all Europeans for UK Biobank. For G&H we used raw genotype 

data and LD was estimated directly for these samples. JLIM assumes only one causal variant 

within a region in each study. We therefore used small windows of 50Kb for each known locus 

to minimise the risk of interference from additional association signals. Distinct causal variants 

were defined by separation in LD space by r2 ≥0.8 from each other. We excluded loci where 

the overlap between UKBB and G&H was <10 SNPs and the proportion of well-imputed SNPs 

overlapping between cohorts (SNP coverage) was <10%; this left no loci to consider for CAD, 

SBP and DBP. We used a significance threshold of p <0.05 to determine evidence of sharing. 

LocusZoom (http://locuszoom.org/) was to create regional association plots. 

 

Comparison of performances of polygenic scores between 

ancestries 

In this study, we compared the performances of PGSs in BPB people from the G&H cohort 

and EUR people from the eMERGE cohort. We calculated the PGSs in the two cohorts using 

https://paperpile.com/c/HFLxz0/OLZZY
https://paperpile.com/c/HFLxz0/uKFGZ
http://locuszoom.org/
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the two approaches described below. We reported the results using the PGS Catalog scores 

in the main text, because using previously published scores developed in external cohorts is 

less likely to have the issue of overfitting. We also compared the two approaches in Figure 

S9. 

 

Previously developed scores from the PGS Catalog: we downloaded previously published 

PGSs from the PGS Catalog. These scores were developed mostly in European-ancestry 

populations. We restricted to 7,353,388 bi-allelic SNPs that had INFO ≥0.3 and MAF ≥0.1% in 

both eMERGE and G&H for scoring. There are often multiple PGSs available for the same 

trait, and we used the one with the highest accuracy in G&H and eMERGE, respectively. The 

PGS ID and the reference for the best score per trait in each of the two cohorts are in 

Supplementary Data 5.   

 

Clumping and p-value thresholding (C+T) PGSs: we also calculated the PGSs based on 

the largest available GWAS summary data obtained in primarily European-ancestry 

populations (Supplementary Data 12). No GWAS have been conducted in large South Asian 

ancestry populations, thus using a much more powerful European-ancestry GWAS would lead 

to more predictive PGS in G&H. We used the clumping and p-value thresholding method (C+T) 

to calculate PGSs, which were optimised in G&H and eMERGE separately. We used LD 

estimated using European ancestry samples (N=503) from the 1000 Genomes project for 

clumping using PRSice2 v2.2.11 17. We calculated multiple scores using combinations of 

various LD r2 thresholds (0.1, 0.2, 0.5, 0.8) and p-value thresholds (5✕10-8, 1✕10-7, 5✕10-7, 

1✕10-6, 5✕10-6, 1✕10-5, 5✕10-5, 1✕10-4, 5✕10-4, 0.001, 0.005, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 

0.3, 0.4, 0.5, 0.8, 1) for each trait. We would suffer from overfitting if we report the performance 

of the PGS that is optimised in the same cohort. To avoid overfitting, we applied 10-fold cross 

validation and repeated it 100 times 18,19. For CAD, the 10 folds had the same case-control 

ratio. For each left-out fold, we calculated the prediction accuracy for PGS constructed using 

https://paperpile.com/c/HFLxz0/aMar9
https://paperpile.com/c/HFLxz0/NX2Vy+Mhhcn
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parameters that were selected in the other nine folds. We then calculated the average across 

the 10 folds and 100 repeats and reported the average performances and the parameters of 

the most frequently selected PGS in Supplementary Data 12. The 95% confidence intervals 

were also calculated from the 10 folds and 100 repeats.   

 

Meta-PGSs combining ancestry-specific GWAS 

In G&H, we further assessed the performance of PGSs that incorporated GWAS summary 

data from the target non-European populations (South Asian ancestry in our case) to improve 

cross-ancestry prediction. We downloaded GWAS summary data that were generated in 

South Asian samples of the UKBB from the Pan-UK Biobank website 

(https://pan.ukbb.broadinstitute.org) to construct South Asian-specific PGS. 

 

Meta-PGS by Marquez-Luna et al. 20: We constructed scores (PGSSAS) using the C+T 

method described above and using South Asian samples from the 1000 Genomes project for 

the LD reference. We evenly split the G&H cohort into a tuning set and a validation set. We 

performed a linear/logistic regression in the tuning set and estimated the weights for PGSEUR 

(which were downloaded from the PGS Catalog, described in Methods) and PGSSAS. We then 

calculated the meta-PGS by linearly combining the two scores and tested the performance in 

the validation set. We repeated it for 100 times and calculated the average accuracy across 

the 100 random splits and estimated the 95% confidence interval. 

 

PRS-CSx: We applied PRS-CSx, an extension of a Bayesian method (PRS-CS), which 

enabled more accurate estimation of effect sizes by leveraging population-specific LD and 

shared genetic information between populations through joint modelling of multiple GWAS 

summary data 21. We used publicly available GWASs in Supplementary Data 4 to construct 

the European-specific PGS. LD reference panels constructed using the 1000 Genomes 

https://pan.ukbb.broadinstitute.org/
https://paperpile.com/c/HFLxz0/4SCWG
https://paperpile.com/c/HFLxz0/w9Nt
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Project were downloaded from https://github.com/getian107/PRScsx. Following Ruan et al. 21, 

we restricted to common variants available in HapMap3. Similarly, we linearly combined the 

PRS-CSx-auto scores derived from European ancestry GWASs (PGSEUR) and from pan UKBB 

South Asian samples (PGSSAS), for which the weights were estimated in the tuning set, and 

accessed the performance of the combined score in the validation set. The performance was 

calculated as the average across 100 random splits and the 95% confidence interval was 

estimated from them.  

 

 

Supplementary Figures  

 

 

 

Supplementary Figure 1. Age distributions of G&H (A) and eMERGE (B). Red indicates 

female participants and blue indicates male participants. Vertical dashed lines indicate the 

average age. In G&H, 56.5% of the 22,490 individuals with electronic health record data are 

female, with the mean age 39.4 (standard deviation, SD: 13.1) years old for women and 44.3 

(SD: 14.3) for men. In eMERGE, 54.5% of the 42,802 individuals are female, with the mean 

age 69.1 (SD: 16.7) and 73.1 (SD: 14.7) for women and men, respectively. 

 

 

 

 

https://github.com/getian107/PRScsx
https://paperpile.com/c/HFLxz0/w9Nt
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Supplementary Figure 2. Principal component analysis (PCA) of 28,022 genotyped 

individuals from the Genes & Health (G&H) cohort. A. PC1 and PC2 for all samples. Red 

indicates self-declared British Bangladeshi samples (N=17,721) and blue represents self-

declared British Pakistani samples (N=9,694). We excluded samples who self-reported as 

coming from other ethnic groups (“Other”) or who did not report ethnicity information, as well 

as genetically-inferred outliers (those with PC1 further than +/- 3 standard deviations from 

the mean of PC1 for the individuals who self-reported as coming from that group). These 

samples are in grey (N=607). B. Density plot for PC1, which clearly differentiates self-

declared British Bangladeshis from self-declared British Pakistanis.  
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Supplementary Figure 3. Pattern of missingness for continuous variables in the 

QRISK3 algorithm. (A) Columns represent all individuals who were aged 25-84 years old in 

2010 (N=15,890). Prevalent cases who developed coronary artery disease earlier than 2010 

were excluded from the QRISK3 analysis. Rows represent variables. Missing data are in red. 

On the top of the heatmap, green indicates individuals that were excluded from the QRISK3 

analysis because of high missingness. (B) Columns represent individuals that were included 

in the QRISK3 analysis (N=9,477). Data that were measured earlier than 1st Jan, 2010 are 

in blue. Yellow indicates data that were measured at a later point. Data in blue and yellow 

were used in the sensitivity analysis (Supplementary Methods), and we replaced missing 

data (red) with imputed data. TC: total cholesterol; HDL: high-density lipoprotein cholesterol; 

SBP: systolic blood pressure; SBP_sd: standard deviation of SBP measurements within 2 

years. 
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Supplementary Figure 4. Regional association plots for non-transferable loci in G&H 

(Credible set p > 0.05 and no variant within 50kb of locus with p < 1✕10-3). A. LDL-C, 

EVI5 locus (rs7515577). B. LDL-C, GPAM locus (rs2255141). C. LDL-C, CETP locus 

(rs7499892). D. HDL-C STAB1 locus (rs13326165). E. HDL-C, TTC39B locus (rs643531). F. 

HDL-C, ACP2 locus (rs2167079). G.HDL-C, SH2B3 locus (rs3184504). H. Total Cholesterol, 

EVI5 locus (rs7515577). I. Total Cholesterol, NBEAL1 locus (rs2351524). J. Total 

Cholesterol, GPAM locus (rs2255141). K. Triglycerides, NECAP2 locus (rs4841132). Colour 

of the points corresponds to the strength of linkage disequilibrium (r2) of each potential 

causal variant (in brackets) identified in EUR ancestry labelled and coloured in purple.  
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Supplementary Figure 5. Regional association plots for CETP locus across lipid traits 

in G&H. A. LDL-C. B. HDL-C. C. Total Cholesterol. D. Triglycerides. Colour of the points 

corresponds to the strength of linkage disequilibrium (r2) of potential causal variant 

(rs7499892) identified in European ancestry, labelled and coloured in purple.  
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Supplementary Figure 6. Regional association plots for major lipid locus, PCSK9 with 

unshared causal variant rs2479409 (pJLIM>0.05) between British Pakistanis and 

Bangladeshis (G&H) and Europeans (UK Biobank). A. LDL-C. B. Total Cholesterol. 

Colour of the points corresponds to the strength of linkage disequilibrium (r2) of each 

potential causal variant (in brackets) identified in European ancestry, labelled and coloured 

in purple.  
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Supplementary Figure 7. Relationship between the relative accuracy of polygenic 

scores (PGSs) and trans-ancestry genetic correlation and heritability estimates. We 

used PGSs from the PGS Catalog. We show the relationship between relative accuracies of 

PGSs (i.e. the ratio of incremental AUC for coronary artery disease (CAD) or incremental R2 

for risk factors estimated in G&H to that in eMERGE) on the y-axes versus the trans-

ancestry genetic correlation (A), ratio of the heritability estimates in G&H over UKB (B), and 

the product of the previous two terms (C). None of the correlations is significant. Error bars 

show 95% confidence intervals (CIs) on both axes. The 95% CIs for relative accuracy on y-

axes were estimated from bootstrap resampling (n=1,000 times) and that for genetic 

correlation on x-axis in (A) were estimated using the standard error. For G&H, heritability 

and accuracy of PGS were estimated in n=17,348 (996 cases) unrelated samples for CAD, 

n=13,926 for body-mass index (BMI), n=11,316 for high-density lipoprotein cholesterol (HDL-

C), n=12,856 for low-density lipoprotein cholesterol (LDL-C), n=11,125 for triglycerides (TG), 

and n=15,908 for both systolic blood pressure (SBP) and diastolic blood pressure (DBP). For 

eMERGE, heritability and accuracy of PGS were estimated in n=32,816 (6,815) unrelated 

samples for CAD, n=37,160 for BMI, n=16,049 for HDL-C, n=15,856 for LDL-C, n=14,384 for 

TG, and n=11,864 for both SBP and DBP. 
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Supplementary Figure 8. Predictive performance of polygenic scores (PGSs) across 

LD r2 and p-value thresholds. Incremental AUC is shown for coronary artery disease 

(CAD) and incremental R2 is shown for the continuous risk factors. Purple indicates the 

performance of the PGS selected using 10-fold cross validation (Supplementary Methods) in 

all G&H samples and green in eMERGE. This is for the purpose of visualisation and the 

results reported in the manuscript are from cross validation. Bars represent PGSs 

constructed using combinations of various p-values (on x-axes; unadjusted, two-sided p-
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values were from publicly available GWAS datasets) and LD clumping r2 thresholds (in the 

four columns). PGSs are sorted so that those on the right contain more SNPs. Asterisks 

indicate the reported PGSs with the highest accuracy per trait. For G&H, the accuracy of 

PGS was estimated in n=17,348 (996 cases) unrelated samples for CAD, n=13,926 for 

body-mass index (BMI), n=11,316 for high-density lipoprotein cholesterol (HDL-C), n=12,856 

for low-density lipoprotein cholesterol (LDL-C), n=11,125 for triglycerides (TG), and 

n=15,908 for both systolic blood pressure (SBP) and diastolic blood pressure (DBP). For 

eMERGE, the accuracy of PGS was estimated in n=32,816 (6,815) unrelated samples for 

CAD, n=37,160 for BMI, n=16,049 for HDL-C, n=15,856 for LDL-C, n=14,384 for TG, and 

n=11,864 for both SBP and DBP.  

 

 

 

 

 
Supplementary Figure 9. Comparing polygenic scores (PGSs) from the PGS Catalog 

and scores calculated using the Clumping and P-value thresholding (C+T) method. 

Predictive accuracy of PGSs for cardiometabolic traits in British Pakistani and Bangladeshi 

(BPB) individuals from G&H (purple) and European-ancestry (EUR) individuals from 

eMERGE (green). Incremental AUC (A) was calculated for coronary artery disease (CAD), 

and incremental R2 (B) was calculated for its continuous risk factors. Previously published 

scores downloaded from the PGS Catalog were developed in mostly European-ancestry 

populations (Supplementary Data 5). We also calculated PGSs based on publicly available 

GWAS summary statistics (Supplementary Data 12) using the C+T method. The C+T PGSs 

were tuned in G&H and eMERGE, respectively (Supplementary Methods). For C+T scores, 

we repeated 10-fold cross validation 100 times, and calculated the average accuracy. Error 

bars indicate 95% confidence intervals estimated by bootstrap resampling of samples for 

PGS Catalog scores and repeating 10-fold cross validation for C+T scores. The highest 

measurements for low-density lipoprotein cholesterol (LDL-C), systolic blood pressure 

(SBP), and diastolic blood pressure (DBP) are compared between eMERGE and G&H, and 

statin-adjusted LDL-C data are also shown for G&H. For G&H, the accuracy of PGS was 

estimated in n=17,348 (996 cases) unrelated samples for CAD, n=13,926 for body-mass 

index (BMI), n=11,316 for HDL-C, n=12,856 for the highest LDL-C measurement, n=10,939 

for statin-adjusted LDL-C, n=11,125 for triglycerides (TG), and n=15,908 for both SBP and 

DBP. For eMERGE, the accuracy of PGS was estimated in n=32,816 (6,815) unrelated 
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samples for CAD, n=37,160 for BMI, n=16,049 for HDL-C, n=15,856 for LDL-C, n=14,384 for 

TG, and n=11,864 for both SBP and DBP.  

 

 

Supplementary Figure 10. Predictive performance of polygenic scores (PGSs) that 

incorporate GWAS data from ancestry-matched samples. PGSs were constructed using 

the Marquez-Luna method (A) and PRS-CSx (B), incorporating GWAS data from the UK 

Biobank South Asian-ancestry (SAS) individuals (Supplementary Methods). Incremental 

AUC was calculated for CAD, and incremental R2 was calculated for its continuous risk 

factors. Error bars indicate 95% confidence intervals which were estimated from bootstrap 

resampling (N=1,000). Colours indicate PGSs that are constructed using different GWAS 

training data (green: GWAS statistics from EUR studies; grey: GWAS statistics from SAS 

samples from UKBB; red: the final PGS derived from linearly combining the previous two 

PGSs). (A) Improvement in accuracy comparing the meta-PGSs (red) with the EUR PGS 

(green) is 4.5% for CAD, 5.0% for BMI, 10.5% for HDL-C, 9.7% for the highest LDL-C, 7.6% 

for the statin-adjusted LDL-C, 8.0% for TG, 8.0% for SBP, and 4.2% for DBP. (B) 

Improvement in accuracy comparing the final PRS-CSx score (red) with the EUR score 

(green) is 0.3% for CAD, 1.7% for BMI, 5.3% for HDL-C, 4.0% for the highest LDL-C, 5.7% 

for the statin-adjusted LDL-C, 7.7% for TG, 7.2% for SBP, and 2.3% for DBP. The accuracy 

of PGS was estimated in n=17,348 (996 cases) unrelated samples from G&H for CAD, 

n=13,926 for BMI, n=11,316 for HDL-C, n=12,856 for the highest LDL-C measurement, 

n=10,939 for statin-adjusted LDL-C, n=11,125 for triglycerides (TG), and n=15,908 for both 

SBP and DBP. 
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Supplementary Figure 11. Effect sizes of polygenic scores (PGSs) from the PGS 

Catalog. A. The odds ratio per standard deviation (SD) of PGS is shown for coronary artery 

disease (CAD) on the left panel, and the differences in phenotypic SD per SD of PGS are 

shown for quantitative traits on the right panel. B. The odds ratio for CAD comparing the four 

quintiles to the middle quintile (40–60%) is shown on the left panel. Quintiles are determined 

in controls. The differences in phenotypic SD compared to the reference quintile are shown 

on the right panel. Error bars show 95% confidence intervals estimated using the standard 

error. For G&H, the effect sizes of PGS in both (A) and (B) were estimated in n=17,348 (996 

cases) unrelated samples for CAD, n=13,926 for body-mass index (BMI), n=11,316 for high-

density lipoprotein cholesterol (HDL-C), n=12,856 for the highest low-density lipoprotein 

cholesterol (LDL-C) measurement, n=10,939 for statin-adjusted LDL-C, n=11,125 for 

triglycerides (TG), and n=15,908 for both systolic blood pressure (SBP) and diastolic blood 

pressure (DBP). For eMERGE, the effect sizes of PGS were estimated in n=32,816 (6,815) 

unrelated samples for CAD, n=37,160 for BMI, n=16,049 for HDL-C, n=15,856 for LDL-C, 

n=14,384 for TG, and n=11,864 for both SBP and DBP. 
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Supplementary Figure 12. Model discrimination for coronary artery disease (CAD) 

with addition of a polygenic score to QRISK3. Red indicates the concordance index (C-

index) of QRISK3 and blue indicates the C-index of an integrated score that combines 

QRISK3 and a polygenic score for CAD. Estimates in all British Pakistani and Bangladeshi 

individuals (n=420 unrelated cases and 7,702 unrelated non-cases) from G&H as well as in 

age-by-sex subgroups (n=207 and 2,779 in males aged 25–54; n=51 and 4,187 in females 

aged 25–54; n=114 and 344 in males aged 55–84; n=48 and 392 in females aged 55–84) 

are shown. The error bars represent 95% confidence intervals estimated using the standard 

error.  

 

 

 
Supplementary Figure 13. Continuous net reclassification index (NRI) for the 

integrated score compared to QRISK3 in all samples and age-by-gender subgroups. 

Continuous NRI in cases (red) and non-cases (blue) are shown. The error bars indicate 95% 

confidence intervals estimated using the bootstrap method. Overall continuous NRI was 

estimated in n=420 unrelated cases and 7,702 unrelated non-cases from G&H. NRI in age-

by-sex subgroups was estimated with the following sample sizes: n=207 unrelated cases 
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and 2,779 unrelated non-cases in males aged 25–54; n=51 and 4,187 in females aged 25–

54; n=114 and 344 in males aged 55–84; n=48 and 392 in females aged 55–84. 

 

 
 

Supplementary Figure 14. Mendelian randomisation estimates of risk factors on 

coronary artery disease using different strategies for instrument selection. Two-

sample Mendelian Randomisation (MR) using coronary artery disease risk (CAD) in G&H 

(n=22,008 samples; among them 1,110 were cases) as the outcome. Genetic instrumental 

variables for the risk factors were selected based on different strategies: loci associated at 

p<1x10-5 (unadjusted, two-sided p-values were from publicly available GWAS datasets) in an 

ancestry-matched GWAS (UKBB SAS), all genome-wide significant loci from the largest 

EUR GWAS, and the subset of these loci that were transferable to SAS. Effect estimates are 

presented as odds ratios with 95% confidence intervals per standard deviation increase in 

the reported unit of the trait: triglycerides (TG), systolic blood pressure (SBP), low-density 

lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), diastolic blood 

pressure (DBP), body mass index (BMI). The p-value (P) and number of single nucleotide 

polymorphism instruments (N SNP) included in the MR analysis are shown for each 

exposure. 
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Supplementary Figure 15. Mendelian randomisation estimates of the causal effects of 

risk factors on coronary artery diseases (CAD) in G&H using loci from ancestry-

matched discovery GWAS as instruments. GWAS for CAD was performed in n=22,008 

(1,110 cases) samples from G&H. Association of risk factors with CAD was assessed for 

instruments selected from UKBB SAS at two p-value thresholds (unadjusted, two-sided p-

values were from publicly available GWAS datasets): p<5x10-5 and p<5x10-8. Effect 

estimates are presented as odds ratios with 95% confidence intervals per standard deviation 

increase in the reported unit of the trait: triglycerides (TG), systolic blood pressure (SBP), 

low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), 

diastolic blood pressure (DBP), body mass index (BMI). The p-value (P) and number of SNP 

instruments (N SNP) included in the MR analysis are shown for each exposure. 
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